MicroRNA-522 reverses drug resistance of doxorubicin-induced HT29 colon cancer cell by targeting ABCB5.
نویسندگان
چکیده
MicroRNAs (miRNAs) are small non-coding RNAs, which are important in the development of multidrug resistance in cancer by regulating gene expression at the post‑transcriptional level. The present study investigated the functional effects of miR‑522 in chemoresistant colon cancer cells. The results demonstrated that miR‑522 was significantly downregulated in doxorubicin (DOX) resistant colon cell line, HT29/DOX, compared with the parental HT29 colon cancer cell line. Overexpression of miR‑522 in the HT29/DOX cells partially restored DOX sensitivity. miRNA target prediction algorithms suggested that ABCB5 was a target gene for miR‑522. A fluorescent reporter assay confirmed that miR‑522 was able to specifically bind to the predicted site of the ABCB5 mRNA 3'‑untranslated region. When miR‑522 was overexpressed in the HT29/DOX cells, the protein expression levels of ABCB5 were downregulated. Furthermore, knockdown of ABCB5 significantly increased the growth inhibition rate of the HT29/DOX cells, compared with the control group. These results suggested that miR‑522 may affect the sensitivity of colon cancer cell lines to DOX treatment by targeting ABCB5.
منابع مشابه
Investigation of the Effects of Vitamin C on Resistance to 5-FU in Colon Cancer Cells Line HT29
Introduction: There is growing evidence about the use of antioxidants to reduce the side effects of chemotherapy and cancer drug resistance. Therefore, this study aimed to use vitamin C as an antioxidant and determine its effect on drug resistance in HT29 cells. Materials & Methods: During this case-control study, HT29 cells were first cultured and evaluated by MTT assay for cell death in th...
متن کاملQuercetin induces cell cycle arrest and apoptosis in CD133+ cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin
Objective(s):The colorectal cancer stem cells (CSCs) with the CD133+ phenotype are a rare fraction of cancer cells with the ability of self-renewal, unlimited proliferation and resistance to treatment. Quercetin has anticancer effects with the advantage of exhibiting low side effects. Therefore, we evaluated the anticancer effects of quercetin and doxorubicin (Dox) in HT29 cancer cells and its ...
متن کاملRhoA silencing reverts the resistance to doxorubicin in human colon cancer cells.
The efficacy of doxorubicin in the treatment of cancer is limited by its side effects and by the onset of drug resistance. Reverting such resistance could allow the decrease of the dose necessary to eradicate the tumor, thus diminishing the toxicity of the drug. We transfected doxorubicin-sensitive (HT29) and doxorubicin-resistant (HT29-dx) human colon cancer cells with RhoA small interfering R...
متن کاملNitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux.
Multidrug resistance (MDR) is a phenomenon by which cancer cells evade the cytotoxic effects of chemotherapeutic agents. It may occur through different mechanisms, but it often correlates with the overexpression of integral membrane transporters, such as P-glycoprotein (Pgp) and MDR-associated proteins (MRPs), with resulting decrease of drug accumulation and cellular death. Doxorubicin is a sub...
متن کاملA LDL-masked liposomal-doxorubicin reverses drug resistance in human cancer cells.
Doxorubicin is one of the most employed anticancer drugs, but its efficacy is limited by the onset of adverse effects such as drug resistance, due to the drug efflux via P-glycoprotein (Pgp). Several factors are associated to a high Pgp activity, including the amount of cholesterol in plasma membrane, which is essential to maintain the pump function. In this work we started from the following o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular medicine reports
دوره 12 3 شماره
صفحات -
تاریخ انتشار 2015